Abstract

The structures and bonding of a series of five-membered rings with BN bonds CxNyBzH5 (x + y + z = 5) and their most stable deprotonated anions CxNyBzH4(-) as well as anionic rings CxNyBzH5(-) have been investigated at the MP2/6-311++G(d,p) level of theory. The great majority of these rings present BN bond orders close to that found in borazine, suggesting that there is substantial electron delocalization in these rings. This observation is also supported by both NBO and ELF analyses. Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have also been performed to obtain the (15)N-(11)B and (1)H-(11)B spin-spin coupling constants. For neutral systems, the former range from -10 to -35 Hz, thereby bracketing the value of (1)J(B-N) for borazine, which is -29 Hz. (1)J(B-N) spans an even greater range in the anions, from -3 to -36 Hz. The absolute value of (1)J(B-N) decreases upon deprotonation if coupling involves the deprotonated nitrogen or a boron atom bonded to the deprotonated N. (1)J(B-H) always decreases upon nitrogen deprotonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.