Abstract

Five isomers of the carbon-rich molecule C5H2 are investigated computationally, using methods based on the coupled-cluster approximation. All of these structures are related to isomers of C3H2 via substitution of hydrogen by ethynyl or attachment of a C2 fragment to a carbene center. The two most stable forms of C5H2 are linear triplet pentadiynylidene (4) and singlet ethynylcyclopropenylidene (6). Both of these isomers have been observed in the laboratory, as has a thirdthe cumulene carbene pentatetraenylidene (5)which is predicted to lie about 15 kcal/mol above the linear triplet. Two other isomers are also studied: ethynylpropadienylidene (7) and 3-(didehydrovinylidene)cyclopropene (8). Both are found to lie less than 25 kcal/mol above the most stable form of C5H2 and to possess rather large dipole moments. Predictions for the harmonic vibrational frequencies of 12C and mono-13C isotopomers, infrared intensities, and rotational constants are also presented. These should assist efforts to identify thes...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.