Abstract

Putative global minima of neutral (Aln) and singly charged (Aln+ and Aln−) aluminum clusters with n=13–34 have been located from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ the generalized gradient approximation of Perdew, Burke, and Ernzerhof to describe exchange-correlation electronic effects. Our results show that icosahedral growth dominates the structures of aluminum clusters for n=13–22. For n=23–34, there is a strong competition between decahedral structures, relaxed fragments of a fcc crystalline lattice (some of them including stacking faults), and hexagonal prismatic structures. For such small cluster sizes, there is no evidence yet for a clear establishment of the fcc atomic packing prevalent in bulk aluminum. The global minimum structure for a given number of atoms depends significantly on the cluster charge for most cluster sizes. An explicit comparison is made with previous theoretical results in the range n=13–30: for n=19, 22, 24, 25, 26, 29, 30 we locate a lower energy structure than previously reported. Sizes n=32, 33 are studied here for the first time by an ab initio technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call