Abstract

Cocrystallizations of diboronic acids [1,3‐benzenediboronic acid (1,3‐bdba), 1,4‐benzenediboronic acid (1,4‐bdba) and 4,4’‐biphenyldiboronic acid (4,4’‐bphdba)] and bipyridines [1,2‐bis(4‐pyridyl)ethylene (bpe) and 1,2‐bis(4‐pyridyl)ethane (bpeta)] generated the hydrogen‐bonded 1 : 2 cocrystals [(1,4‐bdba)(bpe)2] (1), [(1,4‐bdba)(bpeta)2] (2), [(1,3‐bdba)(bpe)2(H2O)2] (3) and [(1,3‐bdba)(bpeta)2(H2O)] (4), wherein 1,3‐bdba involved hydrated assemblies. The linear extended 4,4’‐bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'‐bphdba)(bpe)] (5) and [(4,4'‐bphdba‐me)(bpeta)] (6). For 6, a hemiester was generated by an in‐situ linker transformation. Single‐crystal X‐ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen‐bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D‐to‐2D single‐crystal‐to‐single‐crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call