Abstract

A series of sulfonated poly(sulfonium cation) polymers, sulfonated poly(arylenethioethersulfone)s (SPTES)s possess up to two sulfonate groups per repeat unit, and can be easily converted into corresponding acid form of the SPTES polymer to form a tough, ductile, free-standing, pinhole-free membranes with excellent mechanical properties. The SPTES polymers exhibit good water affinity and excellent proton conductivity due to the high water uptake. Proton conductivities between 100 and 300mS/cm (at 65°C, 85% relative humidity) were observed for the SPTES polymers with 50mol% (SPTES-50) to 100mol% (SPTES-100) of sulfonated monomer. The evaluation by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermomechanical analysis (TMA) showed that the SPTES polymers have excellent thermal stability, mechanical properties, and dimensional stability, making them excellent candidates for the next generation of proton exchange membranes (PEMs) in fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.