Abstract

The dairy industry produces large quantities of whey as a by-product of cheese production and is increasingly looking for new ways to utilize this waste product. Gellan gum is reliably produced by Sphingomonas paucimobilis in growth media containing lactose, a significant component of cheese whey, as a carbon source. We studied and compared polysaccharide biosynthesis by S. paucimobilis ATCC 31461 in media containing glucose, lactose (5 to 30 g/liter), and sweet cheese whey. We found that altering the growth medium can markedly affect the polysaccharide yield, acyl substitution level, polymer rheological properties, and susceptibility to degradation. Depression of gellan production from lactose compared with gellan production from glucose (approximately 30%) did not appear to occur at the level of synthesis of sugar nucleotides, which are the donors of monomers used for biosynthesis of the repetitive tetrasaccharide unit of gellan. The lactose-derived biopolymer had the highest total acyl content; the glucose- and whey-derived gellans had similar total acyl contents but differed markedly in their acetate and glycerate levels. Rheological studies revealed how the functionality of a gellan polysaccharide is affected by changes in the acyl substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call