Abstract

The structures and properties of C-doped NiCr thin film as embedded thin film resistor (ETFR) materials were studied by closed-field, unbalanced magnetron sputtering method. The C-doped NiCr (NiCrC1) thin film had more stable electrical performance, better corrosion resistance, and higher hardness than NiCr thin film. The temperature coefficient of resistance (TCR) of NiCrC1 thin film deposited at room temperature (from 19.73 ppm/K to 173.7 ppm/K) was lower than that of NiCr thin film (from 157.8 ppm/K to 378.9 ppm/K), and the sheet resistor (154.25 Ω/Sq) was higher than that of NiCr thin film (62.84 Ω/Sq). The preferred orientations of C-doped NiCr thin film was Ni (111), while that of NiCr thin film was Ni (011). The carbon-doped NiCr thin film can reduce the defects and stress and change the preferred orientations. The dominant carbon in C-doped NiCr thin film had a graphite-like structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call