Abstract

An investigation of the relative stability of the two known polymorphs of RuSi, having the epsilon-FeSi and CsCl structures, has been made by first-principles pseudopotential calculations. The resulting cell volumes and fractional coordinates at P = 0 are in good agreement with experiment. Application of high pressure to the epsilon-FeSi phase of RuSi is predicted to produce a structure having almost perfect sevenfold coordination. However, it appears that RuSi having the CsCl-type structure will be the thermodynamically most stable phase for pressures greater than 3.6 GPa. Fitting of the calculated internal energy versus volume to a fourth-order logarithmic equation of state led to values (at T = 0 K) for the bulk modulus, K0, of 202 and 244 GPa for the epsilon-FeSi and CsCl phases, respectively, in excellent agreement with experiment. Band-structure calculations for both phases are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call