Abstract

Abstract The present study explores the characteristics of the 20–60-day intraseasonal oscillation (ISO) in the 29-yr observed rainfall in north Vietnam (NVN), central Vietnam (CVN), and south Vietnam (SVN) in rainy seasons. Composite analyses reveal that the 20–60-day ISO in NVN accompanies dual vortices straddling Taiwan, which alternately favor and suppress convection extending from the northern Philippines to NVN. The wet phase in CVN coincides with convergence of northerly and easterly winds over the region. The large-scale pattern governing the 20–60-day ISO in SVN resembles the characteristics of the boreal summer ISO (BSISO). Conditionally unstable anomalies are observed within anomalous anticyclones where the moisture flux diverges out during the dry phase in NVN and SVN, and vice versa. Such anomalies prevent the existence of the anticyclones and finally replace them with anomalous cyclones to start the wet phase. The unstable anomalies could result from descending motion that increases the boundary layer temperature due to adiabatic compression of air. Conversely, boundary layer cooling due to evaporation of rain and interception of solar radiation by clouds produces stable anomalies. The unstable anomalies, moisture flux convergence, and vertical motions shift northward from the convection maximum, leading to the northward propagation of the BSISO convection. The 20–60-day ISO in CVN is not governed by local instability. Vertical cross sections indicate that the ISO in SVN possesses a westward-tilting structure, which is not observed in the NVN and CVN case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call