Abstract

Complexes of copper (II) ions and uracil were studied using tandem mass spectrometry (Fourier transform ion cyclotron resonance, FTICR, mass spectrometry) including extensive isotopic labeling as well as theoretical calculations. Positive ion electrospray mass spectra of aqueous solutions of CuCl(2) and uracil show that the [Cu(Ura-H)(Ura)](+) ion is the most abundant ion even at low concentrations of uracil. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments show that the lowest energy decomposition pathway for [Cu(Ura-H)(Ura)](+) , surprisingly, is not the loss of uracil, but the loss of HNCO followed by HCN as the most abundant secondary fragmentation product. MS(n) studies identified primary, secondary and tertiary fragmentation products. Extensive isotopic labeling studies, as well as computational studies allowed for a detailed fragmentation scheme for the [Cu(Ura-H)(Ura)](+) ion, beginning with the lowest energy structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.