Abstract
Structural and electronic properties for a series of silicon-substituted benzenes (CnSimH6, where n = 0−6, m = 0−6, and n + m = 6) are studied through density functional theory calculations. Benzene is found to sustain its planarity up to two Si substitutions for all isomers. For three Si substitutions, only the 1,3,5-alternate structure (6) is planar, while for four Si substitution, only the 2,3,5,6 structure (10) is planar. Further Si substitution makes all the isomers for the rings nonplanar, which eventually leads to the fully puckered C3v structure for hexasilabenzene (13). The reorganization energies for these molecules are sufficiently low to be favorably utilized for hole conduction. All the molecules form very stable full-sandwich and half-sandwich complexes of the type η6-(CnSimH6)2Cr and η6-(CnSimH6)Cr(CO)3. The binding energies for these complexes increase with increase in the number of Si atoms in the rings. Strategies are proposed for experimental design of extended sheets of silicenes and m...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.