Abstract

Stimulated by the recent observation of the first C(56)Cl(10) chlorofullerene (Science, 2004, 304, 699), we performed a systematic density functional study of the structures and properties of C(56)Cl(10) and related compounds. The fullerene derivatives C(56)Cl(8) and C(56)Cl(10) based on the parent fullerene C(56)(C(2v):011), rather than those from the most stable C(56) isomer with D(2) symmetry, are predicted to possess the lowest energies, and they are highly aromatic. Further investigations show that the heats of formation of the C(56)Cl(8) and C(56)Cl(10) fullerene derivatives are highly exothermic, that is, -48.59 and -48.89 kcal mol(-1) per Cl(2) (approaching that of C(50)Cl(10)), suggesting that adding eight (or ten) Cl atoms releases much of the strain of pure C(56)(C(2v):011) fullerene and leads to highly stable derivatives. In addition, C(56)Cl(8) and C(56)Cl(10) possess large vertical electron affinities, especially for C(56)Cl(8) with value of 3.20 eV, which is even larger than that (3.04 eV) of C(50)Cl(10), indicating that they are potential good electron acceptors with possible photonic/photovoltaic applications. Finally, the (13)C NMR chemical shifts and infrared spectra of C(56)Cl(8) and C(56)Cl(10) are simulated to facilitate future experimental identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call