Abstract

Weakly or "partially" bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3 -Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br-Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb-Br and Sb-N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb-Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb-N, Sb-Cl and Sb-Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call