Abstract

A theoretical analysis of [L]M(μ-CCR)2M[L] and [L]M(μ-RC4R)M[L], where M represents the selected elements from the main group, transition metals, lanthanides and actinides, shows how the central (μ-CCR)2 and (μ-RC4R) units reorganize as M traverses across the periodic table. In this context transition metal and actinide complexes are similar in nature, while lanthanide and main group complexes show similarity. The ground state electronic configuration and thus the metal oxidation state control these striking differences. An effective way to stabilize the (iii) oxidation state of thorium in a metallacycle complex is shown for the first time. A strategy is proposed to make a cross-connection between the two sets. The approach used here lends itself to obvious extensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.