Abstract
The structural and energetic properties of polyfluorene and its derivatives were investigated, using quantum chemical calculations. Conformational analysis of bifluorene was performed by using ab initio (HF/6-31G* and MP2/6-31G*) and density functional theory (B3LYP/6-31G*) calculations. The results showed that the local energy minimum of bifluorene lies between the coplanar and perpendicular conformation, and the B3LYP/6-31G* calculations led to the overestimation of the stability of the planar pi systems. The HOMO-LUMO energy differences of fluorene oligomers and its derivatives — 9,9-dihexylfluorene (DHPF), 9,9-dioctylfluorene (PFO), and bis(2-ethylhexyl)fluorene (BEHPF) — were calculated at the B3LYP/6-31G* level. Energy gaps and effective conjugation lengths of the corresponding polymers were obtained by extrapolating HOMO-LUMO energy differences and the lowest excitation energies to infinite chain length. The lowest excitation energies and the maximum absorption wavelength of polyfluorene were also performed, employing the time-dependent density functional theory (TDDFT) and ZINDO methods. The extrapolations, based on TDDFT and ZINDO calculations, agree well with experimental results. These theoretical methods can be useful for the design of new polymeric structures with a reducing energy gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.