Abstract

Polymer blends based on various ratios of polystyrene (PS) and polymethyl methacrylate (PMMA) were exposed to different doses of gamma radiation up to 25 Mrad. The structure–property behavior of the polymer blends before and after they had been irradiated was investigated by DSC, TGA, and FTIR spectroscopy. The DSC scans of the glass transition temperature (Tg) of the different polymer blends showed that the Tg was greatly decreased by increasing the ratio of the PMMA component in the polymer blends. Moreover, the Tg of PS/PMMA blends was found to decrease with increasing irradiation dose. The depression in Tg was noticeable in the case of blends rich in PMMA component. The TGA thermograms showed that the thermal stability of the unirradiated polymer blends decreases with increasing the ratios of PMMA component. Also, it was found that the presence of PS polymer in the blends affords protection against gamma radiation degradation and improves their thermal stability. However, exposing the polymer blends to high doses of gamma radiation caused oxidative degradation to PMMA components and decreased the thermal stability. The investigation of the kinetic parameters of the thermal decomposition reaction confirm the results of thermal stability. The FTIR analysis of the gamma-irradiated polymer blend films gives further support to the TGA data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 509–520, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.