Abstract

In this work some results on the structure-preserving diagonalization of selfadjoint and skewadjoint matrices in indefinite inner product spaces are presented. In particular, necessary and sufficient conditions on the symplectic diagonalizability of (skew)-Hamiltonian matrices and the perplectic diagonalizability of per(skew)-Hermitian matrices are provided. Assuming the structured matrix at hand is additionally normal, it is shown that any symplectic or perplectic diagonalization can always be constructed to be unitary. As a consequence of this fact, the existence of a unitary, structure-preserving diagonalization is equivalent to the existence of a specially structured additive decomposition of such matrices. The implications of this decomposition are illustrated by several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.