Abstract
The main idea of the structure-preserving method is to preserve the intrinsic geometric properties of the continuous system as much as possible in numerical algorithm design. The geometric constraint in the multi-body systems, one of the difficulties in the numerical methods that are proposed for the multi-body systems, can also be regarded as a geometric property of the multi-body systems. Based on this idea, the symplectic precise integration method is applied in this paper to analyze the kinematics problem of folding and unfolding process of nose undercarriage. The Lagrange governing equation is established for the folding and unfolding process of nose undercarriage with the generalized defined displacements firstly. And then, the constrained Hamiltonian canonical form is derived from the Lagrange governing equation based on the Hamiltonian variational principle. Finally, the symplectic precise integration scheme is used to simulate the kinematics process of nose undercarriage during folding and unfolding described by the constrained Hamiltonian canonical formulation. From the numerical results, it can be concluded that the geometric constraint of the undercarriage system can be preserved well during the numerical simulation on the folding and unfolding process of undercarriage using the symplectic precise integration method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.