Abstract

Homologous series of alkane-1-thiols, alkane-2-thiols, alkane-3-thiols, 2-methylalkane-1-thiols, 2-methylalkane-3-thiols, 2-methylalkane-2-thiols, and alkane-1,ω-dithiols were synthesized to study the influence of structural changes on odor qualities and odor thresholds. In particular, the odor thresholds were strongly influenced by steric effects: In all homologous series a minimum was observed for thiols with five to seven carbon atoms, whereas increasing the chain length led to an exponential increase in the odor threshold. Tertiary alkanethiols revealed clearly lower odor thresholds than found for primary or secondary thiols, whereas neither a second mercapto group in the molecule nor an additional methyl substitution lowered the threshold. To investigate the impact of the SH group, odor thresholds and odor qualities of thiols were compared to those of the corresponding alcohols and (methylthio)alkanes. Replacement of the SH group by an OH group as well as S-methylation of the thiols significantly increased the odor thresholds. By using comparative molecular field analysis, a 3D quantitative structure-activity relationship model was created, which was able to simulate the odor thresholds of alkanethiols in good agreement with the experimental results. NMR and mass spectrometric data for 46 sulfur-containing compounds are additionally supplied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.