Abstract
Retinol-binding protein (RBP) transports vitamin A in the plasma. It consists of eight anti-parallel beta-strands (A to H) that fold to form an orthogonal barrel. The loops connecting the strands A and B, C and D, and E and F form the entrance to the binding site in the barrel. The retinol molecule is found deep inside this barrel. Apart from its specific interaction with retinol, RBP is involved in two other molecular-recognition properties, that is it binds to transthyretin (TTR), another serum protein, and to a cell-surface receptor. Using site-directed mutagenesis, specific changes were made to the loop regions of human RBP and the resultant mutant proteins were tested for their ability to bind to retinol, to TTR and to the RBP receptor. While all the variants retained their ability to bind retinol, that in which residues 92 to 98 of the loop E-F were deleted completely lost its ability to interact with TTR, but retained some binding activity for the receptor. In contrast, the double mutant in which leucine residues at positions 63 and 64 of the loop C-D were changed to arginine and serine respectively partially retained its TTR-binding ability, but completely lost its affinity for the RBP receptor. Mutation of Leu-35 of loop A-B to valine revealed no apparent effect on any of the binding activities of RBP. However, substitution of leucine for proline at position 35 markedly reduced the affinity of the protein for TTR, but showed no apparent change in its receptor-binding activity. These results demonstrate that RBP interacts with both TTR and the receptor via loops C-D and E-F. The binding sites, however, are overlapping rather than identical. RBP also appears to make an additional contact with TTR via its loop A-B. A further implication of these results is that RBP, when bound to TTR, cannot bind simultaneously to the receptor. This observation is consistent with our previously proposed mechanism for delivery of retinol to target tissues [Sivaprasadarao and Findlay (1988) Biochem. J. 255, 571-579], according to which retinol delivery involves specific binding of RBP to the cell-surface receptor, an interaction that triggers release of retinol from RBP to the bound cell rather than internalization of retinol-RBP complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biochemical Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.