Abstract

BackgroundTo investigate structural and functional correlations in glaucoma patients using enhanced depth imaging spectral-domain optical coherence tomography (EDI OCT)-derived parameters.MethodsWe prospectively enrolled healthy participants and glaucomatous patients with a wide range of disease stages. All participants underwent visual field (VF) testing (SITA - Standard 24–2; Carl Zeiss Meditec, Dublin, CA) and EDI OCT imaging (Spectralis; Heidelberg Engineering Co., Heidelberg, Germany). The following optic nerve head parameters were measured on serial vertical EDI OCT B-scans by two experienced examiners masked to patients clinical data: lamina cribrosa (LC) thickness and area, prelaminar neural tissue thickness and area, anterior LC depth, Bruch’s membrane opening (BMO) and average, superior, and inferior BMO-minimum rim width (BMO-MRW). Only good quality images were considered, and whenever both eyes were eligible, one was randomly selected for analysis. Scatter plots were constructed to investigate correlations between each anatomic parameter and patient’s VF status (based on VF index [VFI] values).ResultsA total of 73 eyes of 73 patients were included. All EDI OCT parameters evaluated differed significantly between glaucomatous and control eyes (P ≤ 0.045). A secondary analysis, in which glaucomatous patients were divided according to VF mean deviation index values into 3 groups (mild [G1; > − 6 dB], moderate [G2; − 6 to − 12 dB] and advanced [G3; <− 12 dB] glaucoma), revealed that average BMO-MRW was the EDI OCT parameter that presented more significant differences between the different stages of glaucoma. Significant structure-function correlations were found between VFI values and prelaminar neural tissue area (R2 = 0.20, P = 0.017), average BMO-MRW (R2 = 0.35, P ≤ 0.001), superior BMO-MRW (R2 = 0.21, P = 0.012), and inferior BMO-MRW (R2 = 0.27, P = 0.002). No significant correlations were found for LC area and anterior LC depth (P ≥ 0.452).ConclusionsEvaluating the distribution pattern and structure-function correlations of different laminar and prelaminar EDI OCT-derived parameters in glaucomatous patients, we found better results for neural tissue-based indexes (compared to LC-derived parameters). The diagnostic utility of each parameter deserves further investigations.

Highlights

  • To investigate structural and functional correlations in glaucoma patients using enhanced depth imaging spectral-domain optical coherence tomography (EDI OCT)-derived parameters

  • Regarding glaucoma diagnosis and follow-up, functional evaluation is usually performed with visual field (VF) testing by standard automated perimetry, while structural documentation is based on retinography and optical coherence tomography (OCT) examinations [3]

  • Regarding the structure-function correlations we investigated in our glaucoma population, the following parameters were significantly associated with VF mean deviation (VFMD) values: prelaminar neural tissue (PLNT) area (R2 = 0.20, P = 0.0043), peripapillary retinal nerve fiber layer (RNFL) (pRNFL) thickness (R2 = 0.32, P = 0.0002), aBMO-MRW (R2 = 0.38, P ≤ 0.0001), sBMO-MRW (R2 = 0.27, P = 0.006) and iBMO-MRW (R2 = 0.27, P = .0006)

Read more

Summary

Introduction

To investigate structural and functional correlations in glaucoma patients using enhanced depth imaging spectral-domain optical coherence tomography (EDI OCT)-derived parameters. Regarding glaucoma diagnosis and follow-up, functional evaluation is usually performed with visual field (VF) testing by standard automated perimetry, while structural documentation is based on retinography and optical coherence tomography (OCT) examinations [3]. When it comes to imaging tests in glaucoma, much has changed over the past few years. New anatomic parameters and landmarks have been reported, such as Bruch’s membrane opening (BMO) and BMO-minimum rim width (BMO-MRW) [7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call