Abstract
Investigations into teeth mechanical properties provide insight into physiological functions and pathological changes. This study sought to 1) quantify the spatial distribution of elastic modulus, hardness and the microstructural features of dog dentin and to 2) investigate quantitative relationships between the mechanical properties and the complex microstructure of dog dentin. Maxillary canine teeth of 10 mature dogs were sectioned in the transverse and vertical planes, then tested using nanoindentation and scanning electron microscopy (SEM). Microstructural features (dentin area fraction and dentinal tubule density) and mechanical properties (elastic modulus and hardness) were quantified. Results demonstrated significant anisotropy and spatial variation in elastic modulus, hardness, dentin area fraction and tubule density. These spatial variations adhered to a consistent distribution pattern; hardness, elastic modulus and dentin area fraction generally decreased from superficial to deep dentin and from crown tip to base; tubule density generally increased from superficial to deep dentin. Poor to moderate correlations between microstructural features and mechanical properties (R2 = 0.032–0.466) were determined. The results of this study suggest that the other constituents may contribute to the mechanical behavior of mammalian dentin. Our results also present several remaining opportunities for further investigation into the roles of organic components (e.g., collagen) and mineral content on dentin mechanical behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.