Abstract

Basic residues Arg-118, Lys-119, Lys-128, and Arg-129 within a putative heparin-binding and receptor-binding region of the 155-amino acid form of basic fibroblast growth factor (bFGF) have been changed to neutral glutamine residues by site-directed mutagenesis of the human bFGF cDNA. The bFGF mutant (M6B-bFGF) was expressed in E. coli and purified to homogeneity. When compared to wild type bFGF, M6B-bFGF showed in cultured endothelial cells a similar receptor-binding capacity and mitogenic activity, but a reduced affinity for heparin-like low affinity binding sites, a reduced chemotactic activity, and a reduced capacity to induce the production of urokinase-type plasminogen activator. In vivo, M6B-bFGF lacked a significant angiogenic activity. Modifications of both the primary and the tertiary structure of bFGF appear to be responsible for the modified biological properties of M6B-bFGF, thus confirming the possibility to dissociate at the structural level some of the biological activities exerted by bFGF on endothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.