Abstract

AbstractEleven different N‐terminal protecting groups (acetyl, benzoyl, FMOC, etc.) were employed for the HPLC separation of oligoalanine peptide enantiomers containing up to six amino acids. Isocratic HPLC separations were performed using a hydro‐organic buffered mobile phase and 4 mm ID columns containing three different chiral anion exchange stationary phases based on cinchona alkaloid‐derived chiral selectors. For most peptides successful separations could be obtained with all protecting groups, although those comprising aromatic moieties were found to yield higher enantioselectivities than those with aliphatic residues, since they are capable of undergoing favourable π‐π interactions with the selector. Systematic investigations concerning the presence or absence of structural features of related protecting groups showed that the use of protecting groups that are optimally adjusted to the binding pocket of the chiral selector effects a significant gain in enantioselectivity. At the same time these studies provided new insights into the chiral recognition mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.