Abstract

Rigorous testing methods are essential for ensuring the security and reliability of industrial controller software. Fuzzing, a technique that automatically discovers software bugs, has also proven effective in finding software vulnerabilities. Unsurprisingly, fuzzing has been applied to a wide range of platforms, including programmable logic controllers (PLCs). However, current approaches, such as coverage-guided evolutionary fuzzing implemented in the popular fuzzer American Fuzzy Lop Plus Plus (AFL++), are often inadequate for finding logical errors and bugs in PLC control logic applications. They primarily target generic programming languages like C/C++, Java, and Python, and do not consider the unique characteristics and behaviors of PLCs, which are often programmed using specialized programming languages like Structured Text (ST). Furthermore, these fuzzers are ill suited to deal with complex input structures encapsulated in ST, as they are not specifically designed to generate appropriate input sequences. This renders the application of traditional fuzzing techniques less efficient on these platforms. To address this issue, this paper presents a fuzzing framework designed explicitly for PLC software to discover logic bugs in applications written in ST specified by the IEC 61131-3 standard. The proposed framework incorporates a custom-tailored PLC runtime and a fuzzer designed for the purpose. We demonstrate its effectiveness by fuzzing a collection of ST programs that were crafted for evaluation purposes. We compare the performance against a popular fuzzer, namely, AFL++. The proposed fuzzing framework demonstrated its capabilities in our experiments, successfully detecting logic bugs in the tested PLC control logic applications written in ST. On average, it was at least 83 times faster than AFL++, and in certain cases, for example, it was more than 23,000 times faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.