Abstract

The interaction of hydrogen with cobalt surfaces is of fundamental interest for Fischer-Tropsch synthesis. In the present work, the adsorption and desorption of hydrogen was studied on various cobalt single crystal surfaces that together represent the surface structures exposed by FCC and HCP cobalt nanoparticles used in applied catalysis. Dissociative hydrogen adsorption is activated on flat Co(0001), especially for hydrogen coverages beyond 0.5 ML. A tungsten filament creates hydrogen atoms and hot hydrogen molecules that increase the dissociative sticking probability and make it possible to obtain hydrogen coverages above 0.5 ML. Hydrogen in excess of 0.5 ML binds more weakly and desorbs in a separate low temperature desorption peak, in line with theoretical predictions. A third desorption peak appears above 1 ML and is attributed to subsurface hydrogen, the formation of which is attributed to hydrogen atoms produced by the tungsten filament. Adsorbed hydrogen atoms form (islands) of an ordered (2 × 2)-2H honeycomb structure for coverages between 0.3 and 0.8 ML which points to a specific stability of this structure. Step and kink sites on vicinal close-packed surfaces provide a low energy path for both hydrogen adsorption and desorption which results in a much higher dissociative sticking probability and a lower desorption temperature. The hydrogen adsorption strength on various FCC and HCP cobalt surfaces varies between 30 and 45 kJ/mol Had and is strongest on threefold hollow sites on the close-packed terraces while it is significantly lower on fourfold hollow sites on FCC-(100) and on threefold hollow sites on various open HCP surfaces. Under reaction conditions, the structure-dependent adsorption energy translates to a two to three orders of magnitude variation of the equilibrium constant for hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.