Abstract
Recently several large volatility matrix estimation procedures have been developed for factor-based Ito processes whose integrated volatility matrix consists of low-rank and sparse matrices. Their performance depends on the accuracy of input volatility matrix estimators. When estimating co-volatilities based on high-frequency data, one of the crucial challenges is non-synchronization for illiquid assets, which makes their co-volatility estimators inaccurate. In this paper, we study how to estimate the large integrated volatility matrix without using co-volatilities of illiquid assets. Specifically, we pretend that the co-volatilities for illiquid assets are missing, and estimate the low-rank matrix using a matrix completion scheme with a structured missing pattern. To further regularize the sparse volatility matrix, we employ the principal orthogonal complement thresholding method (POET). We also investigate the asymptotic properties of the proposed estimation procedure and demonstrate its advantages over using co-volatilities of illiquid assets. The advantages of our methods are also verified by an extensive simulation study and illustrated by high-frequency financial data for constituents of the S&P 500 index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.