Abstract

The linear (Winkler) foundation is a simple model widely used for decades to account for the surface response of elastic bodies. It models the response as purely local, linear, and perpendicular to the surface. We extend this model to the case in which the foundation is made of a structured material such as a polymer network, which has characteristic scales of length and time. We use the two-fluid model of viscoelastic structured materials to treat a film of finite thickness, supported on a rigid solid and subjected to a concentrated normal force at its free surface. We obtain the foundation modulus (Winkler constant) as a function of the film's thickness, intrinsic correlation length, and viscoelastic moduli, for three choices of boundary conditions. The results can be used to readily extend earlier applications of the Winkler model to more complex, microstructured substrates. They also provide a way to extract the intrinsic properties of such complex materials from mechanical surface measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.