Abstract

The effective treatment of complex oily wastewater is of great significance but still a considerable challenge, since single-function, expensive reagents, and complicated process have emerged as shackles for practical applications. Herein, with the objective to waste-control-waste, we proposed a facile and sustainable strategy to fabricate a low-cost multifunctional layer from hazardous waste aluminum sludge (WAS) for complex oily wastewater management. The as-designed layered double oxides/WAS (LDOs/WAS) layer with three-dimensional (3D) hierarchical rough surface exhibited excellent underwater superoleophobicity even under corrosive conditions and low adhesion to oil without any chemical modification reagent treatment. Significantly, the layer can be applied to gravity-directed simultaneous efficient oil-in-water emulsions and anions (taking phosphate as an example) separation with a separation efficiency for emulsion and phosphate up to 99.4% and 99.1%, respectively, and a high separation flux of above 2585 L m−2 h−1. Notably, the flux can be controlled simply and flexibly by adjusting the thickness of the layer. Furthermore, the layer also displayed excellent thermal stability, chemical stability, durability and recyclability. Therefore, this work not only presents a promising approach to design sludge-based multifunctional materials for complex oily wastewater remediation, but also shows great potential and value in environmental pollutions reduction and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.