Abstract
Multi-label image recognition is a fundamental yet practical task because real-world images inherently possess multiple semantic labels. However, it is difficult to collect large-scale multi-label annotations due to the complexity of both the input images and output label spaces. To reduce the annotation cost, we propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels, i.e., merely some labels are known while other labels are missing (also called unknown labels) per image. The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations to transfer knowledge of known labels to generate pseudo labels for unknown labels. Specifically, an intra-image semantic transfer module learns image-specific label co-occurrence matrix and maps the known labels to complement unknown labels based on this matrix. Meanwhile, a cross-image transfer module learns category-specific feature similarities and helps complement unknown labels with high similarities. Finally, both known and generated labels are used to train the multi-label recognition models. Extensive experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms. Codes are available at https://github.com/HCPLab-SYSU/HCP-MLR-PL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.