Abstract

In functional reactive programming (FRP), system inputs and outputs are generally modeled as functions over continuous time (behaviors) whose future values are governed by sudden changes (events). In this approach, discrete events are embedded into piece-wise continuous behaviors. In the field of reactive music system programming, we develop an orthogonal approach that seems to better fit our need. Much like piano keys can be played and combined both in sequence and in parallel, we model system inputs and outputs as spatio temporal combinations of what we call temporal values: continuous functions over time whose domain lays between two events: a start and a stop event. Various high level data types and program constructs can then be derived from such a model. They are shown to satisfy robust algebraic and category theoretic properties. Altogether, this eventually provides a simple, robust and elegant programming front-end, temporal tile programming, for reading, memorizing, stretching, combining and transforming flows of inputs into flows of outputs. Although at its infancy, the resulting approach has been experimentally validated for reactive and real-time music system programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.