Abstract
In this paper, we propose a generalized formula for generating puncturing patterns for block-type low-density parity check (B-LDPC) codes with dual-diagonal parity structure. The proposed formula distributes punctured bits uniformly in the zigzag edge connections, as well as maximizes the minimum recovery speed and the reliability of each punctured node. Also, the proposed puncturing can be applied to any B-LDPC code with dual-diagonal parity structure and can provide efficient bitwise puncturing patterns even when the number of puncturing bits is not equal to an integer multiple of the block size. Simulation results show that the proposed punctured B-LDPC codes are better than existing punctured B-LDPC codes and even dedicated B-LDPC codes used in commercial standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.