Abstract

A key challenge in the realization of autonomous vehicles is the machine's ability to perceive its surrounding environment. This task is tackled through a model that partitions vehicle camera input into distinct semantic classes, by taking into account visual contextual cues. The use of structured machine learning models is investigated, which not only allow for complex input, but also arbitrarily structured output. Towards this goal, an outdoor road scene dataset is constructed with accompanying fine-grained image labelings. For coherent segmentation, a structured predictor is modeled to encode label distributions conditioned on the input images. After optimizing this model through max-margin learning, based on an ontological loss function, efficient classification is realized via graph cuts inference using alpha-expansion. Both quantitative and qualitative analyses demonstrate that by taking into account contextual relations between pixel segmentation regions within a second-degree neighborhood, spurious label assignments are filtered out, leading to highly accurate semantic segmentations for outdoor scenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.