Abstract

Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex sparse optimization solved by the alternating direction method of multipliers. We show that if the set of candidate functions forms a structured random sampling matrix of a bounded orthogonal system, the recovery is stable and the error is bounded. The learning approach is validated on synthetic data generated by the viscous Burgers’ equation and two reaction–diffusion equations. The computational results demonstrate the theoretical guarantees of success and the efficiency with respect to the number of candidate functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.