Abstract

How to meet the demand for increasing number of users, higher data rates, and stringent quality-of-service (QoS) in the beyond fifth-generation (B5G) networks? Cell-free massive multiple-input multiple-output (MIMO) is considered as a promising solution, in which many wireless access points cooperate to jointly serve the users by exploiting coherent signal processing. However, there are still many unsolved practical issues in cell-free massive MIMO systems, whereof scalable massive access implementation is one of the most vital. In this paper, we propose a new framework for structured massive access in cell-free massive MIMO systems, which comprises one initial access algorithm, a partial large-scale fading decoding (P-LSFD) strategy, two pilot assignment schemes, and one fractional power control policy. New closed-form spectral efficiency (SE) expressions with maximum ratio (MR) combining are derived. The simulation results show that our proposed framework provides high SE when using local partial minimum mean-square error (LP-MMSE) and MR combining. Specifically, the proposed initial access algorithm and pilot assignment schemes outperform their corresponding benchmarks, P-LSFD achieves scalability with a negligible performance loss compared to the conventional optimal large-scale fading decoding (LSFD), and scalable fractional power control provides a controllable trade-off between user fairness and the average SE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.