Abstract

Strong ambient illumination severely degrades the performance of structured light based techniques. This is especially true in outdoor scenarios, where the structured light sources have to compete with sunlight, whose power is often 2-5 orders of magnitude larger than the projected light. In this paper, we propose the concept of light concentration to overcome strong ambient illumination. Our key observation is that given a fixed light (power) budget, it is always better to allocate it sequentially in several portions of the scene, as compared to spreading it over the entire scene at once. For a desired level of accuracy, we show that by distributing light appropriately, the proposed approach requires 1-2 orders lower acquisition time than existing approaches. Our approach is illumination-adaptive as the optimal light distribution is determined based on a measurement of the ambient illumination level. Since current light sources have a fixed light distribution, we have built a prototype light source that supports flexible light distribution by controlling the scanning speed of a laser scanner. We show several high quality 3D scanning results in a wide range of outdoor scenarios. The proposed approach will benefit 3D vision systems that need to operate outdoors under extreme ambient illumination levels on a limited time and power budget.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.