Abstract
This paper presents an attempt at using the syntactic structure in natural language for improved language models for speech recognition. The structured language model merges techniques in automatic parsing and language modeling using an original probabilistic parameterization of a shift-reduce parser. A maximum likelihood re-estimation procedure belonging to the class of expectation-maximization algorithms is employed for training the model. Experiments on the Wall Street Journal and Switchboard corpora show improvement in both perplexity and word error rate—word lattice rescoring—over the standard 3-gram language model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.