Abstract
In order to improve the performance of fault isolation and diagnosis of principal component analysis (PCA) based methods, this article proposes a novel fault detection and isolation approach using the structured joint sparse PCA (SJSPCA). The objective function involves two regularization terms: the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$l_{2,1}$</tex-math></inline-formula> norm and the graph Laplacian. By imposing the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$l_{2,1}$</tex-math></inline-formula> norm, SJSPCA is able to achieve row-wise sparsity, and introducing the graph Laplacian term can incorporate structured variable correlation information. The row-sparsity property of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$l_{2,1}$</tex-math></inline-formula> norm ensures that the score indices associated with normal variables approaching zero and the graph Laplacian constraint helps the isolation of correlated faulty variables. Once a fault is detected, a two-stage fault-isolation strategy is considered and a score index is calculated for each variable. It is proved that the proposed two-stage strategy is capable of isolating faulty variables. The improved fault-isolation performance of SJSPCA is illustrated by a simulation example and a gas flow fault observed in an industrial blast furnace iron-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.