Abstract

This paper deals with fuzzy scheduling and path planning problems by genetic algorithms. We have proposed a self-organizing manufacturing system (SOMS) that is composed of a number of autonomous modules. Each module decides output through interaction with other modules, but the module does not share complete information concerning other modules in the SOMS. Therefore, we require structured intelligence as a whole system. In this paper, we consider a manufacturing line composed of machining centres and conveyor units. The manufacturing procedure can be divided into a sequence of three modules: (a) tool locating module, (b) scheduling module, and (c) path planning module. The tool locating problems have been already solved. In this paper, we first solve the scheduling problem as global preplanning. Here we assume that the processing time is not constant, because some delay may occur in the machining centres. We therefore apply fuzzy theory to represent incomplete information abou t the machining time. We solve the fuzzy scheduling problem with a genetic algorithm. After global preplanning, the path planning module transports materials and products. Next, the scheduling module acquires the actual processing time of each machining centre. Based on the processing time, the schedule module generates a fuzzy number for the processing time. We discuss the effectiveness of the proposed method through the computer simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call