Abstract
Porous hydrogel copolymers of acrylamide (AAM) and acrylic acid (AAC) were structured in the form of monoliths and granules. AAM-co-AAC porous copolymer monoliths were synthesized using high internal phase emulsion (HIPE) as template and photopolymerization. For granulation, photopolymerization was used for the fabrication of the AAM-co-AAC hydrogel, which was subsequently freeze-granulated. The structural analysis (FTIR and XRD) confirmed the successful synthesis of hydrogel copolymers. The CO2 uptake capacity of structured AAM-co-AAC copolymers was evaluated through adsorption and absorption mechanisms by volumetric and gravimetric methods, respectively. The granules exhibited the CO2 adsorption uptake of 0.8mmolg−1 at 25kPa and 298K. The CO2 and N2 adsorption data demonstrated that the hydrogel copolymers were selective for CO2. Furthermore, the granules were capable of capturing CO2 in the presence of water. The results of absorption of CO2 on water-swollen granules demonstrated that CO2-uptake capacity increases with increasing water content up to 1.8mmolg−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.