Abstract
Unsupervised domain adaptation (UDA) aims at adapting the model trained on a labeled source-domain dataset to an unlabeled target-domain dataset. The task of UDA on open-set person reidentification (re-ID) is even more challenging as the identities (classes) do not have overlap between the two domains. One major research direction was based on domain translation, which, however, has fallen out of favor in recent years due to inferior performance compared with pseudo-label-based methods. We argue that domain translation has great potential on exploiting valuable source-domain data but the existing methods did not provide proper regularization on the translation process. Specifically, previous methods only focus on maintaining the identities of the translated images while ignoring the intersample relations during translation. To tackle the challenges, we propose an end-to-end structured domain adaptation framework with an online relation-consistency regularization term. During training, the person feature encoder is optimized to model intersample relations on-the-fly for supervising relation-consistency domain translation, which in turn improves the encoder with informative translated images. The encoder can be further improved with pseudo labels, where the source-to-target translated images with ground-truth identities and target-domain images with pseudo identities are jointly used for training. In the experiments, our proposed framework is shown to achieve state-of-the-art performance on multiple UDA tasks of person re-ID. With the synthetic→real translated images from our structured domain-translation network, we achieved second place in the Visual Domain Adaptation Challenge (VisDA) in 2020.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.