Abstract

Structured Bayesian networks (SBNs) are a recently proposed class of probabilistic graphical models which integrate background knowledge in two forms: conditional independence constraints and Boolean domain constraints. In this paper, we propose the first exact inference algorithm for SBNs, based on compiling a given SBN to a Probabilistic Sentential Decision Diagram (PSDD). We further identify a tractable subclass of SBNs, which have PSDDs of polynomial size. These SBNs yield a tractable model of route distributions, whose structure can be learned from GPS data, using a simple algorithm that we propose. Empirically, we demonstrate the utility of our inference algorithm, showing that it can be an order-ofmagnitude more efficient than more traditional approaches to exact inference. We demonstrate the utility of our learning algorithm, showing that it can learn more accurate models and classifiers from GPS data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.