Abstract

Cytochrome bc1 (EC 1.10.2.2, bc1) is an essential component of the cellular respiratory chain, which catalyzes electron transfer from quinol to cytochrome c and concomitantly the translocation of protons across the membrane. It has been identified as a promising target in malaria parasites. The structure-based pharmacophore modelling and molecular dynamic simulation approach have been employed to identify novel inhibitors of cytochrome bc1. The best structure-based pharmacophore hypothesis (Hypo1) consists of one hydrogen bond acceptor (HBA), one general hydrophobic (HY), and two hydrophobic aromatic features (HYAr). Further, hydrogen interactions and hydrophobic interactions of known potent inhibitors with cytochrome bc1 were compared with Hypo1, which showed that the Hypo1 has good predictive ability. The validated Hypo1 was used to screen the chemical databases. The hits obtained were subsequently subjected to the molecular docking analysis to identify false-positive hits. Moreover, the molecular docking results were further validated by molecular dynamics simulations. Binding-free energy analysis using MM-GBSA method reveals that the van der Waals interactions and the electrostatic energy provide the basis for favorable absolute free energy of the complex. The five virtual hits were identified as possible candidates for the designing of potent cytochrome bc1 inhibitors.

Highlights

  • The cytochrome bc1 complex (EC 1.10.2.2, bc1) is a vital component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria [1]

  • Based on the specific binding interactions and conformational changes observed in both cyt b and the iron-sulfur protein (ISP) domain into the bc1 complex, Qo inhibitors were further divided into two subgroups. subgroup I (Pf inhibitors) contains stigmatellin (SMA), famoxadone (FMX), and UHDBT, while subgroup II (Pm inhibitors) includes azoxystrobin (AZ) and methoxyacrylate-type inhibitors (MOA), KM, pyraclostrobin (PY), and many others [10]

  • The known cytochrome bc1 inhibitors were collected from the literature and used as a test set for validation of developed pharmacophore hypotheses

Read more

Summary

Introduction

The cytochrome bc complex (EC 1.10.2.2, bc1) is a vital component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria [1]. It is found on the plasma membrane of bacteria and in the inner mitochondrial membrane of eukaryotes [2]. It consists of two heme groups, cytochrome b, iron-sulfur protein (ISP), with a Rieske-type Fe2S2 cluster and cytochrome c1 that undergoes reduction and oxidation during turnover of the enzyme [3].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call