Abstract

ObjectivesUHRF1 is a multi-domain protein that recognizes both histone and DNA modification marks on chromatin. UHRF1 is involved in various cellular processes that lead to tumorigenesis and thus attracted considerable attention as a potential anti-cancer drug target. The SRA domain is a unique to the UHRF family. SRA domain recognizes 5-methylcytosine in hemimethylated DNA and necessary for maintenance DNA methylation mediated by DNMT1. Small molecules capable of interacting with the SRA domain may reduce aberrant methylation levels by preventing the interaction of 5-methylcytosine with the SRA domain and thereby blocking substrate access to the catalytic center of DNMT1. The data were collected to identify and predict an initial set of small molecules that are expected to bind to the SRA domain.Data descriptionNearly 2.4 million molecules from various chemical libraries were screened with the SRA domain of UHRF1 using Schrodinger’s Small Molecule Drug Discovery Suite. The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SRA domain.

Highlights

  • The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SET and Really interesting new gene (RING)-associated domain (SRA) domain

  • Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) functions as an epigenomic controller and is involved in various cellular mechanisms that lead to tumorigenesis [1]

  • Data description The identification of small molecules that are predicted to bind to the SRA domain of UHRF1 was performed via virtual screening using Schrodinger’s Small Molecule Drug Discovery Suite

Read more

Summary

Introduction

Data description: Nearly 2.4 million molecules from various chemical libraries were screened with the SRA domain of UHRF1 using Schrodinger’s Small Molecule Drug Discovery Suite. The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SRA domain. The SRA domain of UHRF1 interacts directly with DNMT1 and thereby provides improved substrate (hemimethylated DNA) access to the catalytic center of DNMT1, leading to an increase of DNA methylation activity [9].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.