Abstract

Inhibition of dipeptidyl peptidase-4 (DPP4) activity has emerged as a promising therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM). Bioinformatics-driven approaches have emerged as crucial tools in drug discovery. Molecular docking and molecular dynamics (MD) simulations are effective tools in drug discovery, as they reduce the time and cost associated with experimental screening. In this study, we employed structure-assisted in-silico methods, including molecular docking and MD simulations, to identify SRT2183, a small molecule that may potentially inhibit the activity of DPP4 enzyme. The interaction between the small molecule "SRT2183" and DPP4 exhibited a binding affinity of −9.9 Kcal/Mol, leading to the formation of hydrogen bonds with the amino acid residues MET348, SER376, and THR351 of DPP4. The MD simulations over a period of 100 ns indicated stable protein-ligand interactions, with no significant conformational rearrangements observed within the simulated timeframe. In conclusion, our results suggest that the small molecule SRT2183 may have the potential to inhibit the DPP4 enzyme and pave the way for the therapeutics of T2DM. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call