Abstract

Antioxidant systems of M. tuberculosis (Mtb) play an important role in providing resistance in the hostile environment of mononuclear phagocytes. Thioredoxin system is a known antioxidant system that consists of three copies of thioredoxins (Trxs) and a single copy of thioredoxin reductase (TrxR). TrxR has been validated as an essential gene known to be involved in the reduction of peroxides, dinitrobenzenes and hydroperoxides, and is crucial in maintaining the survival of Mtb in macrophages. Recently, it has been demonstrated to be a druggable target. In this study, molecular docking was applied to screen more than 20,000 natural compounds from the Traditional Chinese Medicine database. Theoretical calculation of ΔGbinding by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) methods indicated two top-hit compounds that bind with a high affinity to the allosteric site, consisting of a hinge region, of TrxR. Further, stability and binding analysis of both compounds were carried out with molecular dynamics simulation. An analysis of conformational variation by principal component analysis (PCA) and protein contact network (PCN) uncovered the conformational changes in the compound-bound forms of protein. The NADPH domain formed many new interactions with the FAD domain in the compound-bound form, signifying that the binding may render an effect on the protein structure and function. Our results suggest that these two compounds could potentially be used for structure-based lead inhibitors against TrxR. The inhibitor selected as lead compound will be used further as a scaffold to optimize as novel anti-tuberculosis therapeutic. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.