Abstract

Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5′‐deoxy‐5′adenosyl radical, which originates from reversible Co−C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012‐fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate‐loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co−C bond cleavage. Strategically interacting adjacent adenosine‐ and substrate‐binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including “negative catalysis”, a paradigm for AdoCbl‐dependent mutases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.