Abstract
Phenolic acids perform biological effects which are largely influenced by their binding to serum albumin. Therefore, investigating structure-affinity relationship of binding between phenolic acids and serum albumin is important. In this study, 114 phenolic acids and their derivatives, sharing the benzoic acid core with different substituents groups, were selected to investigate structure-affinity relationships with bovine serum albumin. The binding constants were obtained through fluorescence quenching, and a comprehensive mathematical model with inner-filter effect correction was applied. The results showed that the hydroxy group at the 2-position led to stronger binding affinity, while it had a negative influence at the 4-position. Substituting hydroxy groups with methoxy groups at 4-position and with methyl groups at 3-position both strengthened the binding affinity, respectively. Hydrogen bonding was one of the key binding forces for this binding interaction. Our findings provide a fundamental insight on the binding mechanism of phenolic acids to bovine serum albumin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.