Abstract

Haloperidol (HP), a neuroleptic drug, shows high affinity toward σ receptors (SR). HP and reduced-HP at higher concentration were known to induce apoptosis in SR-overexpressing carcinomas and melanomas. Herein, we report the development of cationic lipid-conjugated haloperidol as a new class of anticancer therapeutics. In comparison to HP, the C-8 carbon chain analogue (HP-C8) showed significantly high, SR-assisted antiproliferative activity against cancer cells via caspase-3-mediated apoptosis and down-regulation of pAkt. Moreover, melanoma tumor aggressiveness in HP-C8-treated mice was significantly lower than that in HP-treated mice. HP-C8 simultaneously reduced Akt-protein level and increased Bax/Bcl-2 ratio in vascular endothelial cells, thereby indicating a possible protein kinase down-regulatory and apoptosis inducing role in tumor-associated vascular cells. In conclusion, we developed σ receptor-targeting cationic lipid-modified HP derivatives as a promising class of anticancer therapeutic that concurrently affects cancer and tumor environment associated angiogenic vascular cells through induction of apoptosis and Akt protein down-regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.