Abstract

A family of fungal metabolites, SMTP, is a small-molecule plasminogen modulator that enhances plasminogen activation, leading to thrombolysis. We recently demonstrated that SMTP-7 effectively treats ischemic stroke due to its thrombolytic activity as well as anti-inflammatory action, which is attributable to soluble epoxide hydrolase (sEH) inhibition. In this paper, we studied detailed structure-activity relationships of plasminogen modulation and sEH inhibition using 25 SMTP congeners including six newly synthesized ones. The results clearly demonstrate that the structure of the N-linked side chain of SMTP congeners markedly affect their activities toward plasminogen modulation and inhibitions of the two activities of sEH (C-terminal epoxide hydrolase and N-terminal phosphatase). A slight change in the N-linked side chain results in affording selectivity of SMTP congeners. Many congeners, which lacked plasminogen modulation activity, differently inhibited the two sEH activities depending on the structures of the N-linked side chain. Some congeners were active in plasminogen modulation and inhibition of both activities of sEH. These results help comprehensive understanding of ideal design of a drug useful for ischemic diseases that are associated with inflammation, such as stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.